Quantum Theory Group in Palermo

We are a large team, based in the Department of Physics and Chemistry at University of Palermo, exploring the theory of quantum systems and processes.

We address frontier questions in the engineering, control, characterisation and exploitations of quantum states and resources. The expertise of the members of our group spans sa large range of topics, from Quantum Optics to Condensed Matter and Statistical Physics, from Quantum Information Processing to Open System Dynamics and Artificial Intelligence. We also enjoy exploring the intricacies of the foundations of quantum mechanics from an information theoretic standpoint. Image

A key aim of our research is the development of theoretical frameworks of prompt experimental translation to understand the interplay between quantum resources, non-equilibrium physics, and control.

While pursuing these goals, we interact with some of the leading experimental teams addressing photonics, optomechanics, cold atom, and semiconductor-based platforms. Get in touch with us if you are interested in our research and to explore potentials for collaborations!

Latest News

Papers, Projetcs and …

Finite steady-state current defies non-Hermitian many-body localization

Non-Hermitian many-body localization (NH MBL) has emerged as a possible scenario for stable localization in open systems, as suggested by spectral indicators identifying a putative transition for finite system sizes. In this work, we shift the focus to dynamical probes, specifically the steady-state spin current, to investigate transport properties in a disordered, non-Hermitian XXZ spin chain. Through exact diagonalization for small systems and tensor-network methods for larger chains, we demonstrate that the steady-state current remains finite and decays exponentially with disorder strength, showing no evidence of a transition up to disorder values far beyond the previously claimed critical point. Our results reveal a stark discrepancy between spectral indicators, which suggest localization, and transport behavior, which indicates delocalization. This highlights the importance of dynamical observables in characterizing NH MBL and suggests that traditional spectral measures may not fully capture the physics of non-Hermitian systems. Additionally, we observe a non-commutativity of limits in system size and time, further complicating the interpretation of finite-size studies. These findings challenge the existence of NH MBL in the studied model and underscore the need for alternative approaches to understand localization in non-Hermitian settings.