Entanglement percolation aims at generating maximal entanglement between any two nodes of a quantum network by utilizing strategies based solely on local operations and classical communication between the nodes. As it happens in classical percolation theory, the topology of the network is crucial, but also the entanglement shared between the nodes of the network. In a network of identically partially entangled states, the network topology determines the minimum entanglement needed for percolation. In this work, we generalize the protocol to scenarios where the initial entanglement shared between each two nodes of the network is not the same but has some randomness. In such cases, we find that for classical entanglement percolation, only the average initial entanglement is relevant. In contrast, the quantum entanglement percolation protocol generally performs worse under these more realistic conditions.