Machine Learning-Enhanced Characterisation of Structured Spectral Densities: Leveraging the Reaction Coordinate Mapping

Abstract

Spectral densities encode essential information about system-environment interactions in open-quantum systems, playing a pivotal role in shaping the system’s dynamics. In this work, we leverage machine learning techniques to reconstruct key environmental features, going beyond the weak-coupling regime by simulating the system’s dynamics using the reaction coordinate mapping. For a dissipative spin-boson model with a structured spectral density expressed as a sum of Lorentzian peaks, we demonstrate that the time evolution of a system observable can be used by a neural network to classify the spectral density as comprising one, two, or three Lorentzian peaks and accurately predict their central frequency.

Mauro Paternostro
Mauro Paternostro
Full Professor